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1. Introduction

1.1. Background

Checkpointing and rollback recovery is a standard technique used in providing a fault-tolerant computing

environment. With checkpointing, if a fault is detected by the computer system, the application is then rolled

back to the most recent checkpoint where the state of the system is known to be correct. Checkpointing

schemes can be broadly divided into two categories, depending on how the checkpoint information is

maintained. One scheme, called full checlpointing, involves saving the entire state space of the application

for every checkpoint. The other scheme, called incremental checkpointing, creates major checkpoints

which save the entire state space and minor checkpoints which save the difference between the current and

previous state space. Ibis paper examines the application of compiler-based techniques for implementing

full checkpointing.

Researchers have made use of compilers to help facilitate fault-tolerant schemes in a variety of ways.

Alewine et a/. [1] implemented a compiler-assisted multiple-instructionretry approach which could tolerate

a wide class of code execution failures. The compiler generates code in such a way as to eliminate

possible on-path and branch hazards that might result when instruction retry is performed. Long, Fuchs, and

Abraham [2] created a compiler-assisted approach for static checkpoint insertion which maintains the desired

checkpoint interval and reproducible checkpoint locations. Balasubramanian and Banerjee [3] utilize the

compiler to aid in synthesizing algorithm-based checking techniques for general applications. Wilken and

Kong [4] developed a method of concurrent checking of memory accesses by means of a signature that is

embedded into different types of data structures.

Research pertaining to classical checkpointing and rollback recovery is heavily documented. However,

there is little published work on utilizing compilers in generating checkpoints. Related to this area is the .as
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work done by Chandy and Ramamoorthy [5]. They formulated a graph-theoretic method which guides a

programmer in the decision of where to insert checkpoints in a program. The program is broken down into

distinct tasks. Based on factors such as execution time, checkpoint time, and failure rates, their algorithm

can determine optimal locations, between tasks, for checkpoint placement. By identifying the optimal

checkpoint locations, the maximum checkpoint time, the expected checkpoint time, or the expected run time

can be minimized. A similar approach was pursued by Tbueg and Babaoglu [6], and Upadhyaya and Saluja

[7]. The problem with this approach, as pointed out by Chandy and Ramamoorthy [5], is that the cost of

analysis incurred by the programmer can be excessive.

1.2. The CATCH GCC Compiler

This paper details three different compiler-assisted techniques for implementing full checkpointing. The

checkpointing techniques are called gompiler-gtsstsed techniques for ckeckpointing (CATCH). The check-

pointing scheme is transparent to the programmer and requires no modifications to the computer architec-

ture. The GNU C compiler (GCC) version 2.4.3 [81 was modified in order to implement the checkpointing

schemes. Figure 1 shows the modifications made to the compiler. Highlighted areas represent additions

to the original compiler. The purpose of the CATCH filter is to insert code into the user program with

supporting functions defined in the CATCH libraries. The experiments detailed in this paper were run on a

Sun SPARC workstation (sparc2, UNIX SunOS Release 4.1.3).

2. Checkpoint Interval Maintenance

This section describes how the compiler inserts sparse potential checkpoints in the program to maintain

the desired checkpoint interval. An optimal checkpoint interval can be determined by following one of the
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Figure 1: Stages of the CATCH compiler

documented standard analysis methods [9-171.

2.1. Potential Checkpoints

The fundamental aspect of our approach is to have the compiler insert code into the user program so that

the resulting executable can periodically establish checkpoints. Polling is used to determine elapsed time,

since not all general purpose multi-user systems have user accessible interrupt timers. Polling also keeps

the implementation easier to port to other computer systems. The code that establishes checkpoints is a

subroutine named _checkpointo. It is comparable to Taylor and Wright's [181 _Establish( ) subroutine and

the rfork() subroutine described by Smith and Ioannidis [19]. One notable difference from the rfork()

approach is that _checkpoint() does not require fork() to create a child process before establishing a

checkpoint.

An inherent difficulty of this approach is finding the proper places in the code to take checkpoints, so
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as to maintain a regular checkpoint interval. For example, in the following small block of code the compiler

may not be able to ascertain where to insert the -checkpoint() subroutine due to the fact that the loop upper

bound is unknown at compile time.

scanf(*%do, &bound);
sum = 0;
for (i = 0; i < bound; i++)

sum += f(i);
}
printf ("%d\n4, sum);

If the compiler inserts the .checkpoint() subroutine inside the loop, then the time required to establish a

checkpoint might be prohibitive. On the other hand, if the compiler places the .checkpoint() call after the

loop, the desired checkpoint interval may be exceeded if the loop code executes for a long period of time.

The CATCH GCC compiler resolves this dilemma by locating places in the program where the clock

should be examined in order to decide whether a checkpoint needs to be taken or not. These locations

are called potential checkpoints. In our implementation, potential checkpoints are at the beginning of

subroutines and at the first line inside a loop. The code that handles the potential checkpoint functionality is

a subroutine called -potential(). The -potential() subroutine acts somewhat like a software monitor [201.

The -potential() subroutine performs two functions:

1. Maintaining checkpoint intervals: keep the time elapsed between established checkpoinis as close to
the optimal checkpoint interval (denoted T) as possible.

2. Minimization of resources: minimize the time and/or space required of the checkpointing activities.

Most system level checkpointing implementations address only the first point and maintain a consistent,

rigid checkpoint interval. Yet, as will be shown in Section 3 and Section 4, by relaxing the constraint of a

rigid checkpoint interval, a significant saving of system resources is sometimes possible.

Every encounter of a potential checkpoint allows the user program to take a checkpoint. If the time

since the last established checkpoint exceeds T, then a checkpoint is established at that encountered potential
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checkpoint. Since potential checkpoint locations are frequently encountered (on the order of hundreds of

microseconds) and T is usually on the order of minutes, the checkpoint interval is consistently maintained.

2.2. Sparse Potential Checkpoints

Even though by placing -potential() at the beginning of subroutines and within loops helps to maintain

a rigid checkpoint interval, nonetheless there is a high performance overhead in the frequent polling that

results. To reduce the excessive polling, and hence reduce the performance overhead, a technique called

sparse potential checkpoint is used. The following two line code segment replaces the original call to

-potential():

if (--counter <= 0)
_potential ();

where counter is initially set to a reduction factor 1. As aresult, only one call to -potential(), per I potential

checkpoint encounters, is generated. The average checkpoint interval is still maintained close to T, since

the time between sparse potential checkpoints, even with I on the order of thousands, is relatively short.

Table I outlines the results of an experiment comparing the cost of the original and sparse potential

checkpoint code on a Sun SPARC. The first column is the execution time of the UNIX time() library

subroutine, which consumes most of the time in -potential() (second column). The third column represents

the time required to execute the sparse potential checkpoint code if the counter has not yet reached zero.

Otherwise, the sparse potential checkpoint code takes 37.19 is to execute. The average cost of the sparse

potential checkpoint code can be calculated from the equation 0.677 + 37 19. As an example, when I is

set to 1000, the cost of the sparse potential checkpoint code (fourth column) is significantly less than the

original potential checkpoint code (second column). The lower cost is prominent in reducing the polling

time overhead.
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Table I: Cost comparison of the original and sparse potential checkpoint code (14s)

"0me0 I -potmtial0 I I f= 0 i 1i-imW
36.51 37.19 0.677 0.704

2.3. Experimental Results

Two factors account for the run-time overhead of a program compiled by the CATCH GCC compiler. The

first factor is the time required to perform the actual checkpoint saves. The second factor is attributed to the

polling time, called the potential checkpoint time. The storage device used in the experiments was an [PI

disk on a Sun file server with a 6 Mbytes/sec access time. In all, ten benchmark programs were compiled

with the CATCH GCC compiler and subsequently run. Specifically, the following are the benchmarks used,

some of which were first converted from FORTRAN to C with the f2c translator developed by AT&T Bell

Laboratories and Benlcore.

RKF: uses the Runge-Kutta-Fehlberg method [211 in solving the ordinary differential equation y' = x + y,
y(0) = 2. The computations performed are floating point intensive.

CONVLV: finds the convolution of 1024 signals with one response using the FFT algorithm (22]. Each
signal length was 256 bytes while the length of the response was 99 bytes. The entire data set was
greater than 1 Mbytes, however, the memory-resident data set occupied only a few Kbytes.

LUDCM[P: is an LU decomposition algorithm [211 that decomposes 100 randomly generated matrices
with size uniformly distributed between I and 100. A characteristic of the benchmark is that memory
blocks are allocated before a new matrix is read in and then are subsequently deallocated after the
result is written out.

ESPRESSO: is a SPEC benchmark program [23] developed at the University of California at Berkeley
that performs boolean function minimization. It is an integer benchmark with many short loops and
recursive functions.

MDLJSP2: obtains the solution to the equation of motion for a model of 500 atoms interacting through the
idealized Lenard-Jones potential. The program is from the collection of SPEC benchmark programs.

FPPPP: is a quantum chemistry SPEC benchmark which heavily involves double-precision floating point
operations. The code is characterized by its very large basic blocks.

ORA: is a CPU intensive floating point SPEC benchmark. ORA traces rays through an optical system
comprised of different surfaces. Only a small amount of I/O is performed.
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MATRIX300: is one of the SPEC benchmarks that performs a variety of matrix multiplications, including

matrix transposes using Linpack routines SGEMV, SGEMM, and SAXPY, on matrices on the order
of 300.

TOMCATV: is a mesh generation program and is also one of the SPEC benchmarks. The program involves
very little 1/0.

NASA7: is one of the SPEC benchmarks and is comprised of seven kernels. Each kernel generates its own
input data, performs the kernel, anW compares the result for correctness. The kernels involve a variety

of computations dealing with arrays and matrices.

Table U shows the results of the first experimental run involving two versions of each program. The

"original" version represents the program compiled by the unmodified GCC compiler. The "normal" version

represents the program compiled by the CATCH GCC compiler. The parameters for the "normal" version

are as follows. Each benchmark has I = 1000. For the shorter benchmarks like RKF, CONVLV, LUDCMP,

and ESPRESSO, the value of T was set to 10 seconds. MDLJSP2 had T = 120 seconds, both FPPPP

and ORA had T = 150 seconds, MATRIX300 had T = 180 seconds, TOMCATV had T = 90 seconds,

and lastly NASA7 had T = 900 seconds. To determine how much time can be attributed to polling in

the "normal" version, another version of the program (not shown in the table) was compiled with T = oo

(actually, a very large number). The consequence is that this version will not establish any checkpoints,

hence the longer run time can be solely accounted for by the potential checkpoints.

"The checkpoint time is expressed as the product of two numbers. The first number is the average time

used in establishing a single checkpoint while the second number represents the total number of checkpoints

taken during one run averaged over multiple test runs. The total time overhead merit is expressed as a

percentage of the execution time of the "original" version. For most of the benchmarks, the overhead is

near or below the 10% mark. The time overhead for some of the benchmarks, though, is not satisfactory

and the methods described in the following sections must be employed to make the overhead tolerable.
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Table II: Performance of the "original" and "normal" versions

total average potential checkpoint total
program version execution checkpoint checkpoint time time

time size time overhead
(sea) (bytes) (sea) (secs*#) (%)

RKF original 21.0 - -

normal 22.8 19424.0 1.00 0.40*2 8.57
CONVLV original 17.8 - - -

normal 20.6 49729.6 2.20 0.30*2 15.73
LUDCMP original 24.0 - - -

normal 32.0 108840.3 7.00 0.33*3 33.33
ESPRESSO original 27.0 - -

normal 48.2 331955.2 19.20 0.48*4.2 78.52
MDLJSP2 or al 530.8 -- -

normal 609.4 211653.9 77.80 0.16*5 14.81
FPPPP original 645.6 - -

normal 658.4 359358.4 12.00 0.20*4 1.98
ORA original 727.0 - - - -

normal 733.6 55068.0 5.20 0.35*4 0.91
MATRIX300 original 1053.0 - -

"normal 1173.4 2189567.7 113.40 1.17*6 11.43
TOMCATV original 377.6 - - -

normal 405.2 3730204.0 16.00 2.90*4 7.31
NASA7 original 3662.0

___ _ normal 3879.0 2924748.0 212.80 1.05*4 5.93

3. Checkpoint Size Reduction

3.1. Data Compression

One method of reducing checkpoint size is to perform data compression on the checkpoint files before they

are written out. We implemented an LZW data compression [24], which provided significant checkpoint

size reduction that averaged 48.9% over all checkpoints for all the benchmark programs. However, the

compression algorithm is computationally intensive. As a result, we developed alternative run-time methods

for enhancing checkpoint performance.
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Figure 2: Variation in checkpoint size for the "small" version of LUDCMP

3.2. Adaptive Checkpoindng

The motivation for an adaptive checkpointing scheme, which allows small deviations in T, is illustrated

in Figure 2. Displayed is the checkpoint size trace, over time, of a "small" version of LUDCMR which

exhibits large variations in memory usage. As an example, suppose three checkpoints are taken at time ti,

U4, and t5 with corresponding sizes 34, 85, and 32. If the first checkpoint could be delayed to t2 , the second

shifted back to t3, and the third delayed until t6, then the resulting checkpoints would be reduced to size S3,

91, and s, respectively. Adaptive checkpointing is the method of allowing a window of opportunity to take

a checkpoint in order to take advantage of variations in memory use.

The adaptive checkpointing scheme uses a decision algorithm embedded in _potential(). The algo-

rithm can be viewed pictorially as a transition graph, as seen in Figure 3. The transition graph is constructed

dynamically during program execution. When a potential checkpoint is first encountered, a new node in

the graph is created; otherwise the corresponding node is located. Associated with each node is a cost (the
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Figure 3: Adaptive checkpointing transition graph

number in the box below each node in Figure 3), which in our implementation is the average size of the

checkpoint that would be established at that particular potential checkpoint. Each edge has a transition

probability, which represents the probability of encountering next the potential checkpoint attached to that

edge. Both the cost and transition probability are updated during a potential checkpoint encounter.

There are two factors that guide the decision of when to take a checkpoint: time (T, w, and the current

time) and cost (the current cost and the estimated ne° cost). The variable w is the checkpointing window

size, which delimits the range of time where a checkpoint can be taken. The estimated next cost is simply

the weighted average of the costs of all the immediate successor nodes of the current node. The guideline

for establishing a checkpoint is stated as:

if (the time since the last established checkpoint >= T)
checkpoint );

else if ((T - w <= time since the last established checkpoint)
and (the estimated next cost > the current cost))

rcheckpoint ( ) ;
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else
wait until the next encounter of a potential checkpoint
to see if a checkpoint should be established;

To illustrate the functionality of the transition graph in Figure 3, consider an example where the current

potential checkpoint is node 1 and the current cost is 100,000. If the elapsed time since the last checkpoint

falls in the window (i.e., between T - w and T), the decision to take a checkpoint will be postponed because

the estimated next cost (96,000) is lower than the current cost. If, on the other hand, the elapsed time was

equal to or greater than T, then the algorithm would immediately force a checkpoint to be taken.

3.3. Experimental Results

Table Ill summarizes the results of the "adaptive" version. For the experiments, w = I second for

RKF, CONVLV, LUDCMP, and ESPRESSO and w = 6 seconds for the remaining benchmarks. In our

experiments, values of w less than 10% of T maintained a consistent checkpoint interval. The "adaptive"

version produced smaller checkpoints for only LUDCMP. The other benchmarks are written in such a way

that memory use is relatively constant. As a result, the "adaptive" version will not encounter locations

where memory use is markedly lower and hence be able to establish a smaller checkpoint. The increase in

checkpoint size is due to the transition graph information that must also be saved.

4. Potential Checkpoint Time Reduction

This section outlines the training method that reduces the polling time of the potential checkpoints. The

training method is inspired by Chang and Hwu's profiling technique [26]. A new subroutine called

-snapshot(, which maintains statistical information on the checkpoint time and potential checkpoint time,

replaces the sparse potential checkpoint code. The execution time overhead for the _snapshot() subroutine
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Table m: Performance of the "adaptive" version

total average potential checkpoint total
program execution checkpoint checkpoint time time

time size time overhead
(Ses) (bytes) (ses) (ses*#) (M)

RKF 22.8 19468.0 1.00 0.40*2 8.57
CONVLV 19.6 50052.8 1.20 0.30*2 10.11
LUDChIP 31.8 64551.2 7.20 0.20*3 32.50

ESPRESSO 60.0 332252.8 30.12 0.48*6 122.22
MDLJSP2 631.8 213554.7 100.00 0.20*5 19.03

FPPPP 676.6 361252.8 30.00 0.25*4 4.80
ORA 740.2 55324.0 11.80 0.35*4 1.82

MATRIX300 1188.0 2189956.0 127.75 1.17*6.2 12.82
TOMCATV 405.6 3730716.0 16.40 2.90*4 7.42

NASA7 3916.4 2928744.0 250.20 1.05*4 6.95

is 30.87 As per encounter. The training technique is comprised of three steps:

1. Compile a "training" Version.

2. Run the "training" version to acquire a profile of the checkpoint size over time.

3. Compile the "trained" version of the program, utilizing the information gathered in step 2.

4.1. Sampling

The purpose of the .snapshot() subroutine is to maintain for every potential checkpoint two statistics. It

records the number of times a potential checkpoint is encountered in addition to the average checkpoint

size, as if checkpoints were established at this potential checkpoint location. The information is written out

to an accounting Mfie after every I encounters of potential checkpoints. Also, the "training" version records

in the accounting file the total execution time of the program.

The sampling phase (step 2) is pictorially represented in Figure 4, which shows a trace of the checkpoint

size for the "small" version of the LUDCMP benchmark. The trace is subdivided into ten time intervals

labeled a, through alo, each containing 18300 encounters of potential checkpoints (i.e., I = 18300). The

labels S 4 and S 14 represent the fourth and fourteenth potential checkpoints (the remaining labels are omitted
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Figure 4: Sampling the checkpoint size by potential checkpoints

for clarity). The lines emitting from S4 and S14 show the locations where the two respective potential

checkpoints are encountered. As an example, if a checkpoint should be established at S4 or S14, it would

be advantageous to select S14 since the average checkpoint size is less than that of S4.

4.2. Analysis

The final phase of the training method is the analysis phase (step 3), where the compiler processes the

accounting information provided by the sampling phase. There are two functions to be performed in this

phase: 1) assign a cost to every potential checkpoint, and 2) determine a minimum cost subset of all potential

checkpoints that can fully cover the time intervals. The process of finding a minimum cost subset is aided by

the use of a bipartite graph as illustrated in Figure 5. The nodes on the left-hand side represent the potential

checkpoints Si, I < i < m. The nodes on the right-hand side represent the time intervals aj, 1 < j _< n.

A cost pair (Pi, Ci) is calculated and assigned to each Si, where Pi is the polling cost and Ci is the cost of

establishing a checkpoint for potential checkpoint i. A line joins an Si to an aj if that Si is encountered
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Figure 5: Weighted Minimum Cover (WMC) problem

duing thattime interval. The cost ofa subset X = {Sik I < k < m'} is defned as:

Cost(X) =ZPik + m PC,k=1i Ek-=-Iik

where ik E {l,...,m}. The first term of the cost function is the total polling time, contributed by the

individual potential checkpoints. The second term is based on the premise that the more frequently a

potential checkpoint is encountered, the greater the possibility that a checkpoint will be established there.

Hence, the total checkpoint time (second term) is a weighted average of the checkpoint time of each potential

checkpoint.

For a particular checkpoint i, the value of Pi can be calculated as the product of the time overhead

of the sparse potential checkpoint code and the number of encounters. The value of C, is calculated as the

product of the checkpoint size and the number of checkpoints established during program execution. The

number of checkpoints established is determined by dividing the net execution time (total execution time

minus the time spend in .snapshoto) by T. The time overhead value of the sparse potential checkpoint

code needed in the Pi calculation is obtained from Table I.
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4.3. Weighted Minimum Cover (WMC) Problem

After the costs are calculated, the final task of finding a minimum cost subset of potential checkpoints that

covers all the time intervals can be addressed. This task is called the Weighted Minimum Cover (WMC)

problem. As an example, the minimum cost subset in Figure 5 is comprised of the two shaded potential

checkpoints.

Before the WMC problem is formally stated, certain variables need to be defined. Consider each S,

a subset of A = {faII < j < n}. Let S != {(S,, Pi,C,)ISi g A.Pi and C, are positive real numbers,

I < i < m}, f a polynomial time cost function with bounded value ranging from 2 s to non-negative real

numbers, and K is a positive real number. A set X C S is considered a cover of A if {fUS = Aj for all S,

in X}.

The WMC decision problem can be formally stated as follows: Given a 4-tuple (A, S, f, K), does

there exist a subset X C S such that X is a cover of A and f(X) < K? There might be more than one

unique subset that satisfies the previously stated problem constraints. With this fact in mind, a corresponding

WMC optimization problem can be stated as follows: Given a 3-tuple (A, S, f), find a subset X C S such

that X is a cover of A, and f(X) < f(Y) for every Y that is a cover of A. By proving that the WMC

decision problem is NP-complete, it is straightforward to show that the WMC optimization problem is

NP-hard.

Property: The WMC decision problem is NP-complete.

Proof: To prove that the WMC decision problem is NP-complete, it is adequate enough to show that

it is in NP-space and is NP-hard. For a given X, the process of verifying X is a cover of A, calculating

f(X), and subsequently comparing the result to K can all be accomplished in polynomial time. Thus, the

WMC decision problem is in NP. If the function f is confined to positive solutions, i.e. to f(X) = IX ,



16

then the WMC decision problem becomes the Minimum Cover decision problem which is known to be

NP-complete [27]. Therefore, the WMC decision problem is also NP-hard.

4.4, A Heuristic Algorithm

The number of potential checkpoints in a program can range from tens to hundreds and the number of time

intervals is usually of the order of thousands. As a result, the process of finding an optimal solution to

the WMC problem can be computationally expensive. However, obtaining an optimal solution is neither

critical nor necessary because the costs are based on estimates, and secondly, in our experiments suboptimal

sQlutions perform well.

The heuristic algorithm detailed in this section is designed with two factors in mind: 1) some potential

checkpoints are infrequently encountered (e.g., those at the beginning, the end, and in blocks of code

dealing with error cases), and 2) by not covering all the time intervals, performance may be only slightly

impacted. The algorithm processes and selects potential checkpoints based on a coverage factor lower

bound (LOWMARK) and upper bound (HIGHMARK). The coverage factor of a subset X C S is expressed

as the number of time intervals covered by the union of the first components of its elements divided by the

total number of time intervals. For example, in Figure 5, the subset X = { S2, S4} has a coverage factor of

1.0 since all the time intervals (al through a6) are covered. The experiments performed used a value of 0.5

for LOWMARK and 0.9 for HIGHMARK. The algorithm is described as follows:

delete all potential checkpoints with coverage factor
less than LOWMARK;

use a sorting algorithm to order potential checkpoints by
the cost Pi+Ci;

X = next candidate solution;
while(X is not empty) {

if (coverage factor of X >= HIGHMARK)
break;

else
X = next candidate solution;
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if (X is empty)
X = S;

record X permanently;

The first part of the algorithm eliminates all the potential checkpoints that are infrequently encountered.

The remaining potential checkpoints are considered high coverage (greater than LOWMARK). Hence, the

task of finding a subset of potential checkpoints with a combined coverage factor greater than HIGHMARK

will be simplified, though, the algorithm could still take exponential time in the worst case. The candidate

solution may be generated in either a depth-first or breadth-first manner.

4.S. Exper mental Results

There are two aspects to consider when evaluating the performance of the training method. The first aspect

is the amount of system resources consumed by the compilation and execution of the 'training" version.

The second aspect to evaluate is the performance of the actual "trained" version. Table IV summarizes

the results of the first aspect. The training time refers to the total execution time of the 'training" version

and the analysis time is the time to run the heuristic algorithm, including the I/O time to read the sampling

data from the accounting file. The cover set shows the number of potential checkpoints retained by the

heuristic algorithm. The coverage provided by the cover set is represented as a percentage. For large and/or

long running programs (ESPRES -, MDLJSP2, MATRIX300, TOMCATV, NASA7) the training time is

limited by a compiler option. The reason for the time restriction is because the accounting file can grow

dramatically large in addition to the training time becoming excessively long.

The results of the "trained" version, along with the other versions, are shown in Table V. The input data

used for the "trained" version experiments differed from the input data used during the training step. For all

the benchmarks, except MDLJSP2, the pollina time attiNuted to the potential checkpoints is significantly



18

Table IV: Performance of the "taining" version

# of # of training fie analysis cover coverage
pMgram potential selected time size time set

checkpoints interval (secs) (bytes) (mmcs) (%)
RKF 5 2,577 93 113400 233 j 100

CONVLV 20 4,317 137 525112 1008 {6} 94.8
LUDCUP 18 10,502 315 979092 1916 {7,9) 93.0

ESPRESSO 1055 1,365 60 9614400 16269 {50,810,918) 100
MDUJSP2 83 7,342 360 2639028 4875 t811 100

FFPPP 75 2,825 336 1633720 2983 (4) 97.7
ORA 9 3,648 957 277260 525 f6l 99.1

MATRIX30 24 5,336 180 946812 1691 {201 98.2
TOMCATV 19 2,057 90 227384 10349 {6,8,12,15,171 95.3

NASA7 149 19,437 900 2705032 4883 {15) 97.0

reduced and in some cases completely negligible. The reason MDLUSP2 did not perform better is that the

number of potential checkpoints was only reduced from 83 to 81. The principal feature of MDLJSP2 that

caused the "trained" version to perform badly is the lack of a small set of dominant potential checkpoints.

Most of the potential checkpoints were retained to help cover the time intervals.

A correlation exists between certain code characteristics and the performance of the CATCH com-

piler in training mode. Code with a significant amount of recursion usually results in little performance

improvement. The potential checkpoint at the beginning of the recursive subroutine can be encountered

quite often, thus heavily increasing the polling time. Conversely, code comprised of loops with many iter-

ations and large loop body size can perform well with the CATCH comr, ler. In theses cases, the potential

checkpoint execution time will not dominate the execution time of the loop iteration. Even with nested

loops the performance can be satisfactory, since the training technique can usually remove the majority of

the potential checkpoints located at different nested levels to reduce the polling. Benchmarks that possessed

these favorable code characteristics and performed well under training were FPPPP, ORA, MATRIX300,

TOMCATV, and NASA7.
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Table V: Performance for all versions

total average potential checkpoint total
propam version execution checkpoint checkpoint time time

tie sie tinme overhead
(ua) (bytes) (sca) (seC*#) (%)

RKF original 21.0 - -

normal 22.8 19424.0 1.00 0.40*2 8.57
adaptive 22.8 19468.0 1.00 0.40*2 8.57
trained 22.0 19340.0 0.00 0.50*2 4.76

CONVLV orina 17.8
normal 20.6 49729.6 2.20 0.30*2 15.73

adaptive 19.6 50052.8 1.20 0.30*2 10.11
trained 19.2 49780.0 0.80 0.30*2 7.87

LUDCMP original 24.0
normal 32.0 1088403 7.00 0.33*3 33.33
adatie 31.8 64551.2 7.20 0.20*3 32.50
trained 27.4 131320.8 3.00 0.20*2 14.17

ESPRESSO original 27.0 - -

normal 48.2 331955.2 19.20 0.48*4.2 78.52
adaptive 60.0 332252.8 30.12 0.48*6 122.22
trained 32.6 348672.0 4.40 0.60*2 20.74

MDLJSP2 original 530.8 -
normal 609.4 211653.9 77.80 0.16*5 14.81

adaptive 631.8 213554.7 100.00 0.20*5 19.03
trained 612.4 211652.6 80.80 0.16*5 15.37

FPPPP original 645.6 - - -

normal 658.4 359358.4 12.00 0.20*4 1.98
adaptive 676.6 361252.8 30.00 0.25*4 4.80
trained 647.2 359492.0 1.00 0.20*3 0.25

ORA oi 727.0 - - - -

normal 733.6 55068.0 5.20 0.35*4 0.91
adaptive 740.2 55324.0 11.80 0.35*4 1.82
trained 728.8 54844.0 0.40 0.35*4 0.25

MATRIX300 original 1053.0 -

normal 1173.4 2189567.7 113.40 1.17*6 11.43
adaptive 1188.0 2189956.0 127.75 1.17*6.2 12.82

trained 1058.8 2189572.0 0.00 1.16*5 0.55
TOMCATV original 377.6 - - -

normal 405.2 3730204.0 16.00 2.90*4 7.31
adaptive 405.6 3730716.0 16.40 2.90*4 7.42
trained 386.0 3730204.0 0.40 2.00*4 2.22

NASA7 original 3662.0 - - - -

normal 3879.0 2924748.0 212.80 1.05*4 5.93
adaptive 3916.4 2928744.0 250.20 1.05*4 6.95
trained 3699.6 2924788.0 30.60 1.75*4 1.03
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5. Implementation of the CATCH GCC Compiler

5.1. CATCH Filter and CATCH Libraries

The CATCH filter (Figure 1), placed between the parsing and optimization stages, works on an intermediate

language representation called the Register Tansster Level (RT). The CATCH filter executes the following:

1. Inserts the subroutine call .prolog() at the start of the main() function.

2. Inserts the subroutine call -epilog() at the end of the main() function.

3. Locates loops and subroutines to insert sparse potential checkpoint code as outlined in Section 2 and
Section 4 when training is performed.

4. Replaces traditional library calls to fopeno, fcloseo, exito, and abort() with .openo, _closeo,
..zito, and .bort() respectively.

5. Inserts variables that are used by the checkpointing scheme.

6. Controls the training mode (Section 4).

The CATCH library contains the corresponding definitions for the subroutines _checkpointo,

_prologo, -epilog), -potential(), -snapshoto, -openo, -close(, .zito, and _borto. In addition, an

altered version of malloc() and the data compression/decompression code is included. The implementation

details of the subroutines are described in the following subsections.

5.2. ChecpoiAnlg

The -checkpoint() subroutine saves the register environment and records the current position of each open

file. A reentry address located towards the end of the -checkpoint() subroutine is then stored. The reentry

address is the location were execution will resume at recovery time. The start and end address of the dataseg,

which contains both the initialized data segment and the uninitialized bss segment, and the spseg, which

is just the stack segment, are both determined. Finally, the layout of memory usage (i.e., the start and end
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Figure 6: Checkpoint files and index files

addresses of dataseg and spseg) is saved in a checkpointfile along with the actual contents of dataseg and

spseg (Figure 6).

A difficult issue in checkpointing is how to handle the state space associated with I/O states and disk

contents. In practice, many user-level checkpointing methods will either not permit I/O operations [19] or

only operate with a specially designed I/O subsystem [181. Fortunately, for a majority of non-interactive

applications, simple stream file I/O is only needed. With our CATCH implementation, sequential reads and

writes of stdin, stdout, stderr or disk files using the stdio package (furnished in a UNIX system) are allowed.

In order to tolerate system crashes, a minimum of two checkpoint files (one working file plus one or

more established files) need to be maintained. Each checkpoint file has a unique name, base.ckpn, where

base is the base name of the file containing the main() function and n is the sequence number of the

checkpoint file. A checkpoint file is considered valid only if all information has. been recorded in the file

and it has been successfully closed.

The most recent checkpoint file is kept track of by an index. A setckp utility is provided that allows

the user or an automatic restart mechanism to modify the index for cases involving latent error detection.

The index is recorded in two identical indexfiles (Figure 6), named base.actO and base.actl. Two indexes

are maintained so that a system crash during the update of the index would not destroy a record of the index

(see the following subsection). The steps involved in creating a new checkpoint are as follows:

I. Create the nth valid checkpoint file F,,.
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2. Update the index value in the first index file Io from n - I to n.

3. Update the index value in the second index file I1 from n - I to n.

The checkpoint is considered established when the content of Io is set to n in step 2.

5.3. Recovery

For a process to recover from an error, the process is simply restarted by reissuing the original command.

The responsibility of reissuing can be handled by the user or by an automatic restart mechanism that monitors

all submitted but unfinshed jobs. Upon reissuing the original command, the process will immediately enter

the .prolog() subroutine. Subsequently, the index value stored in 1o (denoted io) and the index value stored

in I, (denoted i1 ) are read to determine which checkpoint file to use. Index file Io (or 11) is valid if it exists

as well as the checkpoint file that is points to, Fo (or Fl,), also exists. The actions taken during recovery

are guided by the list of rules:

1. If neither 1o nor 11 is valid, start execution from the beginning.

2. If Io is valid but 1, is invalid, use Fi, for recovery.

3. If Io is invalid but I is valid, use Fi, for recovery.

4. If both Io and I are valid and io = il, use Fo for recovery.

5. If both 10 and I are valid but io > il, use F-o for recovery.

6. If both Io and l1 are valid but io < ii, use Fi, for recovery.

Before the end of the main() function, the _epilog() subroutine is encountered which deletes both

index files and any remaining checkpoint files. All abort() and exit() subroutine calls are replaced by

-bort() and .xit() respectively, which will call _epilog() before terminating the program. The _open()

subroutine will call fopen() after recording the file name and access mode of the file. The _close()

subroutine replaces the traditional fclose() call whose purpose is to delete the information recorded by



23

Table VI: CATCH compiler switches

switch default description
-catch-n off enable the CATCH filter, maintain at

n = 1 least n checkpoint files during normal
execution

-auto-n off enable automatic insertion of sparse
n = 60 potential checkpoint code with T = n

seconds
-pl-n on set reduction factor I = n

n = 1000
-show off display the checkpointing and recovery

activities
-comp off enable LZW data compressor
-adaptive-n off set adaptive checkpointing window size

n =0 w =n
-train-n off set training mode

n =oo set maximum training time to n

_openo. A modified version of malloc() exists that returns to the operating system the deallocated memory

blocks contiguous to the unallocated area through brk() or sbrko.

5.4. User Control

"The CATCH GCC compiler does permit the user to explicitly add checkpointing code to the program, if

desired. A potential checkpoint location can be created by simply adding the subroutine -potential() to

the code. The compiler will not add any sparse potential checkpoint code in a block where a -potential()

subroutine is explicitly added. Similarly, a checkpoint location can be created by adding the subroutine

_checkpoint() to the program. Conversely, if the speed of a particular block is critical to a program, the

subroutine _nocheckpoint() may be added so that the compiler will not add any sparse potential checkpoint

code in the block. Incidentally, no object code is generated for the _nocheckpoint() subroutine. The

different checkpointing schemes with their corresponding parameters can be selected by the user by means

of compiler switches. The switches, their description, and their default settings are shown in Table VI.
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6. Conclusion

A means of performing checkpointing with the aid of a compiler was detailed in this paper. The compiler-

assisted approach is transparent to both the programmer and the hardware. Application level checkpointing

inserted sparse potential checkpoint code into the user program. For programs exhibiting large variations

in memory usage, the adaptive checkpointing technique reduced checkpoint size as well as checkpoint

time by allowing a window of opportunity to take a checkpoint. The training method selected low-cost,

high-coverage potential checkpoints which had the effect of reducing the overall polling time overhead.

Experimental results revealed that the CATCH compiler works well on code consisting of loops with many

iterations and large loop body size.
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